Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555443

RESUMO

Alkaptonuria (AKU) is an ultra-rare metabolic disease caused by the accumulation of homogentisic acid (HGA), an intermediate product of phenylalanine and tyrosine degradation. AKU patients carry variants within the gene coding for homogentisate-1,2-dioxygenase (HGD), which are responsible for reducing the enzyme catalytic activity and the consequent accumulation of HGA and formation of a dark pigment called the ochronotic pigment. In individuals with alkaptonuria, ochronotic pigmentation of connective tissues occurs, leading to inflammation, degeneration, and eventually osteoarthritis. The molecular mechanisms underlying the multisystemic development of the disease severity are still not fully understood and are mostly limited to the metabolic pathway segment involving HGA. In this view, untargeted metabolomics of biofluids in metabolic diseases allows the direct investigation of molecular species involved in pathways alterations and their interplay. Here, we present the untargeted metabolomics study of AKU through the nuclear magnetic resonance of urine from a cohort of Italian patients; the study aims to unravel molecular species and mechanisms underlying the AKU metabolic disorder. Dysregulation of metabolic pathways other than the HGD route and new potential biomarkers beyond homogentisate are suggested, contributing to a more comprehensive molecular signature definition for AKU and the development of future adjuvant treatment.


Assuntos
Alcaptonúria , Dioxigenases , Humanos , Alcaptonúria/genética , Metabolômica , Ácido Homogentísico/metabolismo , Biomarcadores , Espectroscopia de Ressonância Magnética
2.
Cells ; 11(22)2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36429096

RESUMO

Nitisinone (NTBC) was recently approved to treat alkaptonuria (AKU), but there is no information on its impact on oxidative stress and inflammation, which are observed in AKU. Therefore, serum samples collected during the clinical studies SONIA1 (40 AKU patients) and SONIA2 (138 AKU patients) were tested for Serum Amyloid A (SAA), CRP and IL-8 by ELISA; Advanced Oxidation Protein Products (AOPP) by spectrophotometry; and protein carbonyls by Western blot. Our results show that NTBC had no significant effects on the tested markers except for a slight but statistically significant effect for NTBC, but not for the combination of time and NTBC, on SAA levels in SONIA2 patients. Notably, the majority of SONIA2 patients presented with SAA > 10 mg/L, and 30 patients in the control group (43.5%) and 40 patients (58.0%) in the NTBC-treated group showed persistently elevated SAA > 10 mg/L at each visit during SONIA2. Higher serum SAA correlated with lower quality of life and higher morbidity. Despite no quantitative differences in AOPP, the preliminary analysis of protein carbonyls highlighted patterns that deserve further investigation. Overall, our results suggest that NTBC cannot control the sub-clinical inflammation due to increased SAA observed in AKU, which is also a risk factor for developing secondary amyloidosis.


Assuntos
Alcaptonúria , Humanos , Alcaptonúria/tratamento farmacológico , Alcaptonúria/complicações , Alcaptonúria/metabolismo , Produtos da Oxidação Avançada de Proteínas/metabolismo , Produtos da Oxidação Avançada de Proteínas/uso terapêutico , Qualidade de Vida , Biomarcadores/metabolismo , Proteína Amiloide A Sérica/metabolismo , Inflamação/metabolismo , Estresse Oxidativo
3.
Orphanet J Rare Dis ; 15(1): 46, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-32050984

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare autosomal recessive disease caused by a mutation in the homogentisate 1,2-dioxygenase (HGD) gene. One of the main obstacles in studying AKU, and other ultra-rare diseases, is the lack of a standardized methodology to assess disease severity or response to treatment. Quality of Life scores (QoL) are a reliable way to monitor patients' clinical condition and health status. QoL scores allow to monitor the evolution of diseases and assess the suitability of treatments by taking into account patients' symptoms, general health status and care satisfaction. However, more comprehensive tools to study a complex and multi-systemic disease like AKU are needed. In this study, a Machine Learning (ML) approach was implemented with the aim to perform a prediction of QoL scores based on clinical data deposited in the ApreciseKUre, an AKU- dedicated database. METHOD: Data derived from 129 AKU patients have been firstly examined through a preliminary statistical analysis (Pearson correlation coefficient) to measure the linear correlation between 11 QoL scores. The variable importance in QoL scores prediction of 110 ApreciseKUre biomarkers has been then calculated using XGBoost, with K-nearest neighbours algorithm (k-NN) approach. Due to the limited number of data available, this model has been validated using surrogate data analysis. RESULTS: We identified a direct correlation of 6 (age, Serum Amyloid A, Chitotriosidase, Advanced Oxidation Protein Products, S-thiolated proteins and Body Mass Index) out of 110 biomarkers with the QoL health status, in particular with the KOOS (Knee injury and Osteoarthritis Outcome Score) symptoms (Relative Absolute Error (RAE) 0.25). The error distribution of surrogate-model (RAE 0.38) was unequivocally higher than the true-model one (RAE of 0.25), confirming the consistency of our dataset. Our data showed that inflammation, oxidative stress, amyloidosis and lifestyle of patients correlates with the QoL scores for physical status, while no correlation between the biomarkers and patients' mental health was present (RAE 1.1). CONCLUSIONS: This proof of principle study for rare diseases confirms the importance of database, allowing data management and analysis, which can be used to predict more effective treatments.


Assuntos
Alcaptonúria , Qualidade de Vida , Gerenciamento de Dados , Humanos , Aprendizado de Máquina , Doenças Raras
4.
J Cell Physiol ; 235(10): 6808-6816, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-31989660

RESUMO

Alkaptonuria (AKU) is a rare disease correlated with deficiency of the enzyme homogentisate 1,2 dioxygenase, which causes homogentisic acid (HGA) accumulation. HGA is subjected to oxidation/polymerization reactions, leading to the production of a peculiar melanin-like pigmentation (ochronosis) after chronic inflammation, which is considered as a triggering event for the generation of oxidative stress. Clinical manifestations of AKU are urine darkening, sclera pigmentation, early severe osteoarthropathy, and cardiovascular and renal complication. Despite major clinical manifestations of AKU being observed in the bones and skeleton, the molecular and functional parameters are so far unknown in AKU. In the present study, we used human osteoblasts supplemented with HGA as a AKU cellular model. We observed marked oxidative stress, and for the first time, we were able to correlate HGA deposition with an impairment in the Wnt/ß-catenin signaling pathway, opening a range of possible therapeutic strategies for a disease still lacking a known cure.


Assuntos
Ácido Homogentísico/farmacologia , Osteoblastos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , beta Catenina/metabolismo , Alcaptonúria/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Células Cultivadas , Humanos , Inflamação/metabolismo , Melaninas/metabolismo , Ocronose/metabolismo , Osteoblastos/metabolismo , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
5.
FASEB J ; 33(11): 12696-12703, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31462106

RESUMO

Alkaptonuria (AKU) is an ultrarare autosomal recessive disorder (MIM 203500) that is caused byby a complex set of mutations in homogentisate 1,2-dioxygenasegene and consequent accumulation of homogentisic acid (HGA), causing a significant protein oxidation. A secondary form of amyloidosis was identified in AKU and related to high circulating serum amyloid A (SAA) levels, which are linked with inflammation and oxidative stress and might contribute to disease progression and patients' poor quality of life. Recently, we reported that inflammatory markers (SAA and chitotriosidase) and oxidative stress markers (protein thiolation index) might be disease activity markers in AKU. Thanks to an international network, we collected genotypic, phenotypic, and clinical data from more than 200 patients with AKU. These data are currently stored in our AKU database, named ApreciseKUre. In this work, we developed an algorithm able to make predictions about the oxidative status trend of each patient with AKU based on 55 predictors, namely circulating HGA, body mass index, total cholesterol, SAA, and chitotriosidase. Our general aim is to integrate the data of apparently heterogeneous patients with AKUAKU by using specific bioinformatics tools, in order to identify pivotal mechanisms involved in AKU for a preventive, predictive, and personalized medicine approach to AKU.-Cicaloni, V., Spiga, O., Dimitri, G. M., Maiocchi, R., Millucci, L., Giustarini, D., Bernardini, G., Bernini, A., Marzocchi, B., Braconi, D., Santucci, A. Interactive alkaptonuria database: investigating clinical data to improve patient care in a rare disease.


Assuntos
Alcaptonúria , Biologia Computacional , Bases de Dados Genéticas , Medicina de Precisão , Doenças Raras , Alcaptonúria/metabolismo , Alcaptonúria/patologia , Alcaptonúria/terapia , Feminino , Humanos , Masculino , Doenças Raras/metabolismo , Doenças Raras/patologia , Doenças Raras/terapia
6.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341892

RESUMO

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Assuntos
Alcaptonúria/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Ocronose/tratamento farmacológico , Alcaptonúria/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos
7.
Comput Biol Med ; 103: 1-7, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30316064

RESUMO

This paper describes our experience with the development and implementation of a database for the rare disease Alkaptonuria (AKU, OMIM: 203500). AKU is an autosomal recessive disorder caused by a gene mutation leading to the accumulation of homogentisic acid (HGA). Analogously to other rare conditions, currently there are no approved biomarkers to monitor AKU progression or severity. Although some biomarkers are under evaluation, an extensive biomarker analysis has not been undertaken in AKU yet. In order to fill this gap, we gained access to AKU-related data that we carefully processed, documented and stored in a database, which we named ApreciseKUre. We undertook a suitable statistical analysis by associating every couple of potential biomarkers to highlight significant correlations. Our database is continuously updated allowing us to find novel unpredicted correlations between AKU biomarkers and to confirm system reliability. ApreciseKUre includes data on potential biomarkers, patients' quality of life and clinical outcomes facilitating their integration and possibly allowing a Precision Medicine approach in AKU. This framework may represent an online tool that can be turned into a best practice model for other rare diseases.


Assuntos
Alcaptonúria , Bases de Dados Factuais , Medicina de Precisão/métodos , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/fisiopatologia , Biomarcadores , Interpretação Estatística de Dados , Humanos , Doenças Raras , Interface Usuário-Computador
8.
J Cell Physiol ; 233(6): 4961-4971, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215700

RESUMO

Osteosarcoma (OS) is an ultra-rare highly malignant tumor of the skeletal system affecting mainly children and young adults and it is characterized by an extremely aggressive clinical course. OS patients are currently treated with chemotherapy and complete surgical resection of cancer tissue. However, resistance to chemotherapy and the recurrence of disease, as pulmonary metastasis, remain the two greatest challenges in the management, and treatment of this tumor. For these reasons, it is of primary interest to find alternative therapeutic strategies for OS. Dysregulated Hedgehog signalling is involved in the development of various types of cancers including OS. It has also been implicated in tumor/stromal interaction and cancer stem cell biology, and therefore presents a novel therapeutic strategy for cancer treatment. In our work, we tested the activity of five potent Smoothened (SMO) inhibitors, four acylguanidine and one acylthiourea derivatives, against an OS cell line. We found that almost all our compounds were able to inhibit OS cells proliferation and to reduce Gli1 protein levels. Our results also indicated that SMO inhibition in OS cells by such compounds, induces apoptosis with a nanomolar potency. These findings suggest that inactivation of SMO may be a useful approach to the treatment of patients with OS.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Ósseas/tratamento farmacológico , Guanidinas/farmacologia , Osteossarcoma/tratamento farmacológico , Receptor Smoothened/antagonistas & inibidores , Tioureia/farmacologia , Acilação , Apoptose/efeitos dos fármacos , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Transdução de Sinais/efeitos dos fármacos , Receptor Smoothened/metabolismo , Tioureia/análogos & derivados , Células Tumorais Cultivadas , Proteína GLI1 em Dedos de Zinco/metabolismo
9.
Expert Rev Proteomics ; 14(6): 477-490, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28513226

RESUMO

INTRODUCTION: Helicobacter pylori (H. pylori) is a gram-negative bacterium that colonizes the gastric epithelium and mucous layer of more than half the world's population. H. pylori is a primary human pathogen, responsible for the development of chronic gastritis, peptic ulceration and gastric cancer. Proteomics is impacting several aspects of medical research: understanding the molecular basis of infection and disease manifestation, identification of therapeutic targets and discovery of clinically relevant biomarkers. Areas covered: The main aim of the present review is to provide a comprehensive overview of the contribution of proteomics to the study of H. pylori infection pathophysiology. In particular, we focused on the role of the bacterium and its most important virulence factor, CagA, in the progression of gastric cells transformation and cancer progression. We also discussed the proteomic approaches aimed at the investigation of the host response to bacterial infection. Expert commentary: In the field of proteomics of H. pylori, comprehensive analysis of clinically relevant proteins (functional proteomics) rather than entire proteomes will result in important medical outcomes. Finally, we provided an outlook on the potential development of proteomics in H. pylori research.


Assuntos
Infecções por Helicobacter/genética , Helicobacter pylori/genética , Proteômica , Neoplasias Gástricas/genética , Progressão da Doença , Regulação Bacteriana da Expressão Gênica/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/patogenicidade , Humanos , Neoplasias Gástricas/microbiologia , Fatores de Virulência/genética
10.
Calcif Tissue Int ; 101(1): 50-64, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28271171

RESUMO

Alkaptonuria (AKU) is a hereditary disorder that results from altered structure and function of homogentisate 1,2 dioxygenase (HGD). This enzyme, predominantly produced by liver and kidney, is responsible for the breakdown of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway. A deficient HGD activity causes HGA levels to rise systemically. The disease is clinically characterized by homogentisic aciduria, bluish-black discoloration of connective tissues (ochronosis) and joint arthropathy. Additional manifestations are cardiovascular abnormalities, renal, urethral and prostate calculi and scleral and ear involvement. While the radiological aspect of ochronotic spondyloarthropathy is known, there are only few data regarding an exhaustive ultrastructural and histologic study of different tissues in AKU. Moreover, an in-depth analysis of tissues from patients of different ages, having varied symptoms, is currently lacking. A complete microscopic and ultrastructural analysis of different AKU tissues, coming from six differently aged patients, is here presented thus significantly contributing to a more comprehensive knowledge of this ultra-rare pathology.


Assuntos
Alcaptonúria/patologia , Adulto , Idoso , Alcaptonúria/complicações , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Ocronose/etiologia , Ocronose/patologia
11.
J Cell Physiol ; 232(7): 1728-1738, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27454006

RESUMO

Alkaptonuria (AKU) is an ultra-rare autosomal genetic disorder caused by a defect in the activity of the enzyme homogentisate 1,2-dioxygenase (HGD) that leads to the accumulation of homogentisic acid (HGA) and its oxidized product, benzoquinone acetic acid (BQA), in the connective tissues causing a pigmentation called "ochronosis." The consequent progressive formation of ochronotic aggregates generate a severe condition of oxidative stress and inflammation in all the affected areas. Experimental evidences have also proved the presence of serum amyloid A (SAA) in several AKU tissues and it allowed classifying AKU as a secondary amyloidosis. Although AKU is a multisystemic disease, the most affected system is the osteoarticular one and articular cartilage is the most damaged tissue. In this work, we have analyzed for the first time the cytoskeleton of AKU chondrocytes by means of immunofluorescence staining. We have shown the presence of SAA within AKU chondrocytes and finally we have demonstrated the co-localization of SAA with three cytoskeletal proteins: actin, vimentin, and ß-tubulin. Furthermore, in order to observe the ultrastructural features of AKU chondrocytes we have performed TEM analysis, focusing on the Golgi apparatus structure and, to demonstrate that pigmented areas in AKU cartilage are correspondent to areas of oxidation, 4-HNE presence has been evaluated by means of immunofluorescence. J. Cell. Physiol. 232: 1728-1738, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Alcaptonúria/patologia , Condrócitos/metabolismo , Citoesqueleto/metabolismo , Actinas/metabolismo , Adulto , Idoso , Aldeídos/metabolismo , Biomarcadores/metabolismo , Cartilagem Articular/metabolismo , Estudos de Casos e Controles , Condrócitos/ultraestrutura , Citoesqueleto/ultraestrutura , Feminino , Imunofluorescência , Complexo de Golgi/metabolismo , Complexo de Golgi/ultraestrutura , Humanos , Peroxidação de Lipídeos , Masculino , Pessoa de Meia-Idade , Pigmentos Biológicos/metabolismo , Proteína Amiloide A Sérica/metabolismo , Tubulina (Proteína)/metabolismo , Vimentina/metabolismo
12.
Biochim Biophys Acta Gen Subj ; 1861(2): 135-146, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27865997

RESUMO

BACKGROUND: Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism characterized by homogentisic acid (HGA) accumulation due to a deficient activity of the homogentisate 1.2-dioxygenase (HGD) enzyme. This leads to the production of dark pigments that are deposited onto connective tissues, a condition named 'ochronosis' and whose mechanisms are not completely clear. Recently, the potential role of hitherto unidentified proteins in the ochronotic process was hypothesized, and the presence of Serum Amyloid A (SAA) in alkaptonuric tissues was reported, allowing the classification of AKU as a novel secondary amyloidosis. METHODS: Gel electrophoresis, Western Blot, Congo Red-based assays and electron microscopy were used to investigate the effects of HGA on the aggregation and fibrillation propensity of amyloidogenic proteins and peptides [Aß(1-42), transthyretin, atrial natriuretic peptide, α-synuclein and SAA]. LC/MS and in silico analyses were undertaken to identify possible binding sites for HGA (or its oxidative metabolite, a benzoquinone acetate or BQA) in SAA. RESULTS: We found that HGA might act as an amyloid aggregation enhancer in vitro for all the tested proteins and peptides in a time- and dose- dependent fashion, and identified a small crevice at the interface between two HGD subunits as a candidate binding site for HGA/BQA. CONCLUSIONS: HGA might be an important amyloid co- component playing significant roles in AKU amyloidosis. GENERAL SIGNIFICANCE: Our results provide a possible explanation for the clinically verified onset of amyloidotic processes in AKU and might lay the basis to setup proper pharmacological approaches to alkaptonuric ochronosis, which are still lacking.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Ácido Homogentísico/farmacologia , Agregação Patológica de Proteínas/induzido quimicamente , Alcaptonúria/metabolismo , Peptídeos beta-Amiloides/metabolismo , Amiloidose/metabolismo , Fator Natriurético Atrial/metabolismo , Sítios de Ligação/efeitos dos fármacos , Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Homogentisato 1,2-Dioxigenase/metabolismo , Humanos , Ocronose/metabolismo , Oxirredução/efeitos dos fármacos , Pré-Albumina/metabolismo , Proteína Amiloide A Sérica/metabolismo , alfa-Sinucleína/metabolismo
13.
J Inherit Metab Dis ; 39(6): 801-806, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671890

RESUMO

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of AKU treatment is palliative and little is known about its physiopathology. Neovascularization is involved in the pathogenesis of systemic inflammatory rheumatic diseases, a family of related disorders that includes AKU. Here, we investigated the presence of neoangiogenesis in AKU synovium and healthy controls. Synovium from AKU patients, who had undergone total joint replacement or arthroscopy, or from healthy patients without any history of rheumatic diseases, who underwent surgical operation following sport trauma was subjected to hematoxylin and eosin staining. Histologic grades were assigned for clinical disease activity and synovitis based on cellular content of the synovium. By immunofluorescence microscopy, using different endothelial cell markers, we observed large vascularization in AKU but not in healthy synovium. Moreover, Western blotting and quantification analyses confirmed strong expression of endothelial cell markers in AKU synovial tissues. Importantly, AKU synovium vascular endothelium expressed high levels of ß-dystroglycan, a protein previously involved in the regulation of angiogenesis in osteoarthritic synovium. This is the first report providing experimental evidences that new blood vessels are formed in AKU synovial tissues, opening new perspectives for AKU therapy.


Assuntos
Alcaptonúria/patologia , Neovascularização Patológica/patologia , Alcaptonúria/metabolismo , Biomarcadores/metabolismo , Estudos de Casos e Controles , Distroglicanas/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neovascularização Patológica/metabolismo , Membrana Sinovial/patologia
14.
Int J Biochem Cell Biol ; 81(Pt B): 271-280, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27590860

RESUMO

Alkaptonuria (AKU) is an ultra-rare inborn error of metabolism associated with a defective catabolism of phenylalanine and tyrosine leading to increased systemic levels of homogentisic acid (HGA). Excess HGA is partly excreted in the urine, partly accumulated within the body and deposited onto connective tissues under the form of an ochronotic pigment, leading to a range of clinical manifestations. No clear genotype/phenotype correlation was found in AKU, and today there is the urgent need to identify biomarkers able to monitor AKU progression and evaluate response to treatment. With this aim, we provided the first proteomic study on serum and plasma samples from alkaptonuric individuals showing pathological SAA, CRP and Advanced Oxidation Protein Products (AOPP) levels. Interesting similarities with proteomic studies on other rheumatic diseases were highlighted together with proteome alterations supporting the existence of oxidative stress and inflammation in AKU. Potential candidate biomarkers to assess disease severity, monitor disease progression and evaluate response to treatment were identified as well.


Assuntos
Alcaptonúria/sangue , Alcaptonúria/urina , Biomarcadores/sangue , Biomarcadores/urina , Inflamação/fisiopatologia , Estresse Oxidativo , Proteoma , Produtos da Oxidação Avançada de Proteínas/sangue , Produtos da Oxidação Avançada de Proteínas/urina , Idoso , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
15.
ChemMedChem ; 11(7): 674-8, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26947423

RESUMO

Alkaptonuria (AKU) is a rare multisystem metabolic disease caused by deficient activity of homogentisate 1,2-dioxygenase (HGD), which leads to the accumulation of homogentisic acid (HGA). Currently, there is no treatment for AKU. The sole drug with some beneficial effects is the herbicide nitisinone (1), an inhibitor of p-hydroxyphenylpyruvate dioxygenase (4-HPPD). 1 has been used as a life-saving drug in infants with type I tyrosinemia despite severe side effects due to the buildup of tyrosine. Four clinical trials of nitisinone to treat AKU have shown that 1 consistently decreases HGA levels, but also caused the accumulation of tyrosine in blood serum. Moreover, the human preclinical toxicological data for 1 are incomplete. In this work, we performed pharmacodynamics and toxicological evaluations of 1, providing the first report of LD50 values in human cells. Intracellular tyrosinemia was also evaluated. Three additional 4-HPPD inhibitors with a more favorable profile than that of 1 in terms of IC50, LD50, and tyrosine accumulation were also identified among commercially available compounds. These may be promising starting points for the development of new therapeutic strategies for the treatment of AKU.


Assuntos
4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Alcaptonúria/tratamento farmacológico , Cicloexanonas/química , Cicloexanonas/farmacologia , Herbicidas/química , Herbicidas/farmacologia , Ácido Homogentísico/metabolismo , Nitrobenzoatos/química , Nitrobenzoatos/farmacologia , 4-Hidroxifenilpiruvato Dioxigenase/metabolismo , Alcaptonúria/metabolismo , Animais , Sobrevivência Celular/efeitos dos fármacos , Cicloexanonas/síntese química , Relação Dose-Resposta a Droga , Herbicidas/síntese química , Humanos , Masculino , Estrutura Molecular , Nitrobenzoatos/síntese química , Ratos , Ratos Wistar , Relação Estrutura-Atividade
16.
J Cell Physiol ; 230(5): 1148-57, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25336110

RESUMO

Alkaptonuria (AKU) is a rare genetic disease that affects the entire joint. Current standard of treatment is palliative and little is known about AKU physiopathology. Chondroptosis, a peculiar type of cell death in cartilage, has been so far reported to occur in osteoarthritis, a rheumatic disease that shares some features with AKU. In the present work, we wanted to assess if chondroptosis might also occur in AKU. Electron microscopy was used to detect the morphological changes of chondrocytes in damaged cartilage distinguishing apoptosis from its variant termed chondroptosis. We adopted histological observation together with Scanning Electron Microscopy and Transmission Electron Microscopy to evaluate morphological cell changes in AKU chondrocytes. Lipid peroxidation in AKU cartilage was detected by fluorescence microscopy. Using the above-mentioned techniques, we performed a morphological analysis and assessed that AKU chondrocytes undergo phenotypic changes and lipid oxidation, resulting in a progressive loss of articular cartilage structure and function, showing typical features of chondroptosis. To the best of our knowledge, AKU is the second chronic pathology, following osteoarthritis, where chondroptosis has been documented. Our results indicate that Golgi complex plays an important role in the apoptotic process of AKU chondrocytes and suggest a contribution of chondroptosis in AKU pathogenesis. These findings also confirm a similarity between osteoarthritis and AKU.


Assuntos
Alcaptonúria/patologia , Apoptose , Cartilagem/patologia , Condrócitos/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Aldeídos/metabolismo , Cartilagem/ultraestrutura , Condrócitos/ultraestrutura , Ativação Enzimática , Feminino , Proteínas de Ligação ao GTP/metabolismo , Humanos , Articulações/patologia , Masculino , Pessoa de Meia-Idade , Osteoartrite/patologia , Proteína 2 Glutamina gama-Glutamiltransferase , Espectrometria por Raios X , Coloração e Rotulagem , Transglutaminases/metabolismo
17.
J Matern Fetal Neonatal Med ; 25 Suppl 1: 110-3, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22348288

RESUMO

OBJECTIVE: Placental pathology assists in characterizing the antenatal environment and may provide information about the baby's subsequent development. We aim to assess whether histological patterns of placenta are associated with an increased risk of perinatal diseases and to evaluate how different patterns of placental dysfunction can affect the neurodevelopmental outcome. METHODS: We analyzed the histopathological characteristics of 105 singleton placentas from infants born between 23 and 31 weeks of gestation and we assessed pair-wise correlations with perinatal diseases. Estimated relative risks were calculated from odds ratios. RESULTS: Histological chorioamnionitis (CA group) was detected on 51 of 100 placentas tested. Lesions of uteroplacental circulation (abruption, infarction or thrombosis, perivillous fibrin deposition, syncytial knots; vasculopathy group) were detected on 29. 25 normal placentas served as controls. The incidence of bronchopulmonary dysplasia (BPD) and patent ductus arteriosus (PDA) was higher in CA than in control group. The risk of developing retinopathy of prematurity (ROP), intraventricular hemorrhage (IVH) and PDA was higher in CA than in vasculopathy group. CONCLUSIONS: At low gestational age CA, rather than placental lesions of vasculopathy, negatively impacts perinatal outcome. Clinical significance of histologic vasculopathy remains questionable. Other pathophysiological mechanisms than those associated with placental changes may occur following dysfunction of uteroplacental circulation.


Assuntos
Doenças do Prematuro/patologia , Placenta/patologia , Estudos de Casos e Controles , Corioamnionite/patologia , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Gravidez
18.
Pediatr Nephrol ; 26(1): 105-9, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20949283

RESUMO

Patent ductus arteriosus (PDA) is the most common cardiovascular abnormality of the preterm infant usually treated with ibuprofen (IBU). PDA is strictly related to oxidative stress (OS) in neonates. This study tests the hypothesis that OS occurs in neonates with PDA and that IBU treatment reduces OS. Forty-three preterm babies with gestational age (GA) <33 weeks were studied prospectively. Three urine samples were collected: at time 0 (before starting treatment), time 1 (after pharmacological PDA closure), and time 2 (7 days after the end of treatment) in all patients. OS was studied by measuring urinary isoprostane (IPs) levels. The results showed significant changes in urinary IP levels from time 0 to time 2 (Kruskal-Wallis, p=0.047). Time trend showed a significant decrease in IPs from time 0 to time 1 after IBU therapy (p=0.0067). This decrease was followed by an increase in IPs levels 7 days after treatment. IBU therapy for PDA closure reduced the risk of OS related to free-radical (FR) generation. This antioxidant effect of IBU may be beneficial in preterm babies with PDA who are at high risk for OS.


Assuntos
Antioxidantes/uso terapêutico , Permeabilidade do Canal Arterial/tratamento farmacológico , Ibuprofeno/uso terapêutico , Doenças do Prematuro/tratamento farmacológico , Isoprostanos/urina , Antioxidantes/farmacologia , Permeabilidade do Canal Arterial/urina , Feminino , Radicais Livres , Humanos , Ibuprofeno/farmacologia , Recém-Nascido , Recém-Nascido Prematuro , Doenças do Prematuro/urina , Masculino , Estresse Oxidativo/efeitos dos fármacos , Estudos Prospectivos , Estatísticas não Paramétricas , Fatores de Tempo
19.
Free Radic Res ; 44(8): 891-906, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20528566

RESUMO

Toxicological and environmental issues are associated with the extensive use of agricultural pesticides, although the knowledge of their toxic effects as commercial formulations is still far from being complete. This work investigated the impact of three herbicides as commercial formulations on the oxidative status of a wild type Saccharomyces cerevisiae strain. With yeast being a well-established model of eukaryotic cells, especially as far as regards the stress response, these results may be indicative of potential damages on higher eukaryotes. It was found that herbicide-mediated toxicity towards yeast cells could be the result of an increased production of hydroperoxides (like in the case of the herbicides Pointer and Silglif) or advanced oxidation protein products and lipid peroxidation (especially in the case of the herbicide Proper Energy). Through a redox-proteomic approach it was found also that, besides a common signature, each herbicide showed a specific pattern for protein thiols oxidation.


Assuntos
Herbicidas/farmacologia , Peróxido de Hidrogênio/metabolismo , Saccharomyces cerevisiae/efeitos dos fármacos , Compostos de Sulfidrila/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/metabolismo
20.
Early Hum Dev ; 86(4): 241-4, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20466493

RESUMO

BACKGROUND: Despite recent advances in preterm newborns healthcare, perinatal pathologies and disabilities are increasing. Oxidative stress (OS) is determinant for the onset of an unbalance between free radicals (FRs) production and antioxidant systems which plays a key role in pathogenesis of pathologies such as retinopathy of prematurity (ROP), bronchopulmonary dysplasia (BPD), necrotizing enterocolitis (NEC), intraventricular hemorrhage (IVH), grouped as 'free radical-related diseases' (FRD). AIM: This study tests the hypothesis that OS markers levels in cord blood may predict the onset of FRD pathologies. PATIENTS AND METHODS: 168 preterm newborns of GA: 24-32weeks (28.09+/-1.99); and BW: 470-2480 gr (1358.11+/-454.09) were consecutively recruited. Markers of potential OS risk (non-protein bound iron, NPBI; basal superoxide anion, BSA; under stimulation superoxide anion, USSA) and markers of OS-related damage (total hydroperoxides, TH; advanced oxidation protein products, AOPP) were assessed in cord blood. Associations between FRD onset and OS markers were checked through inferential analysis (univariate logistic regression). RESULTS: The development of FRD was significantly associated to high cord blood levels of TH, AOPP and NPBI (respectively p=0.000, OR=1.025, 95%CI=1.013-1.038; p=0.014, OR=1.092, 95%CI=1.018-1.172; p=0.007, OR=1.26995%CI=1.066-1.511). CONCLUSIONS: Elevated levels of TH, AOPP and, above all, NPBI, in cord blood are associated with increased risk for FRD. OS markers allow the early identification of infants at risk for FRD because of perinatal oxidant exposure. This can be useful in devising strategies to prevent or ameliorate perinatal outcome.


Assuntos
Radicais Livres , Doenças do Recém-Nascido/metabolismo , Recém-Nascido Prematuro , Estudos de Casos e Controles , Estudos de Coortes , Humanos , Recém-Nascido , Medição de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...